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SUMMARY

This paper de�nes topology relations of elements treated as overlapping lists of nodes. In particular,
the element topology makes use of element faces, element vertices and boundary faces which coincide
with the actual (geometrical) faces, vertices and boundary faces in the case of true �nite elements.
The element topology is used in an agglomeration algorithm to produce agglomerated elements (a non-
overlapping partition of the original elements) and their topology is then constructed, thus allowing
for recursion. The main part of the algorithms is based on operations on Boolean sparse matrices
and the implementation of the algorithms can utilize any available (parallel) sparse matrix format.
Applications of the sparse matrix element topology to AMGe (algebraic multigrid for �nite element
problems), including elementwise constructions of coarse non-linear �nite element operators are outlined.
An algorithm to generate a block nested dissection ordering of the nodes for generally unstructured �nite
element meshes is given as well. The coarsening of the element topology is illustrated on a number of
�ne-grid unstructured triangular meshes. Published in 2002 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Assume that we are given a sparse matrix A, e.g. coming from �nite element discretization of
second-order elliptic PDEs. Following the element agglomeration algorithm proposed in Jones
and Vassilevski [1], provided that an initial set of elements, i.e. lists (or sets) of degrees of
freedom (or nodes), is given, one can produce similar lists of agglomerated elements, i.e. a
smaller set of elements, called agglomerated elements. Each agglomerated element (AE) is
formed by joining a number of elements. The algorithm under consideration exploits certain
topological information about the elements; namely, one appropriately de�nes element faces,
and based on the face–face connectivity (relation) the agglomeration procedure operates. The
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details will be summarized in Section 2. Typically, in practice, a �nite element mesh gen-
erator will provide the initial information we need, i.e. the relation ‘element node’ and also
the relations ‘element face’ and ‘face node’. The main point of the present paper is based
on an agglomeration step which produces agglomerated elements to de�ne their topology, for
example faces of AEs (further denoted by AEfaces) and respective topological relations. In
order to be able to recursively apply certain algorithms one needs to create the same informa-
tion after each step of agglomeration, i.e. the new relations ‘AE AEface’, ‘AEface node’, etc.
More speci�cally, the recursive application of the agglomeration algorithm from [1], which
relies on the relations ‘face face’, ‘element face’ and ‘face element’ requires that those have
to be created at every coarsening step, i.e. after an agglomeration step one needs to compute
the new relations ‘AEface AEface’ and ‘AE AEface’, ‘AEface AE’. The correct de�nitions of
the above relations and the algorithms for their computation are given in Section 2. Equivalent
de�nitions of these relations were proposed in Reference [1]. In the present paper, as it turns
out, we were able to formulate all algorithms for generating the needed relations in terms
of (sparse matrix)×(sparse matrix) products and forming the transpose of sparse matrix. In
most of the cases only the symbolic part of these sparse matrix operations is needed. More
precisely, only the algorithm that computes faces of the agglomerated elements requires the
numerical part of a sparse matrix×(sparse matrix) product.
A main application of the proposed sparse matrix element topology is given in the coarse

grid selection phase of AMG(e) (AMG stands for algebraic multigrid whereas AMGe stands
for AMG for �nite element problems) as well as in the construction of AMG(e) interpolation
mappings. Some details are outlined in Section 4.
The recursive de�nition of coarse elements and their topology is a useful tool in several

other applications; for example, the notion of element matrices on coarse levels can be useful
to devise powerful (spectral) AMGe methods. In addition, the notion of vertices of the coarse
elements is useful to de�ne coarse discretizations to certain non-linear problems. Those are top-
ics presented in greater detail elsewhere [1–4]. Here, only the modi�cation needed for the con-
struction of coarse non-linear �nite element elliptic operators is brie�y outlined in Section 5.
Another application of the sparse matrix element topology utilizes the faces as separators.

That is, one can de�ne ‘boundary’ of an element as the union of its faces. Similarly, to
identify the interior nodes of E one uses its faces, the AEfaces. They form the boundary of E.
Applying a proper two-by-two block ordering (interior and boundary nodes) of the AE nodes
recursively (i.e. consecutive agglomeration and face identi�cation of the new agglomerates),
one ends up with a block nested dissection-type ordering of the set of �ne degrees of freedom
(nodes). Some more details are given in Section 3.
Section 6 contains some illustration of the agglomeration algorithm which exploits the

sparse matrix element topology.
Finally, some conclusions are drawn at the end of the paper.

2. ELEMENT TOPOLOGY AND RELATION-BASED AGGLOMERATION
ALGORITHMS

2.1. Main de�nitions and constructions

By de�nition, an element is a ‘list of degrees of freedom’ (or list of nodes), e={d1; : : : ; dne},
and we are given an overlapping partition {e} of D (the set of degrees of freedom or nodes).
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Figure 1. Sample grid: 12 elements, 31 faces and 20 nodes.

In practice, each element e is associated with an element matrix Ae, an ne× ne matrix, then
the given sparse matrix A is assembled from the individual element matrices Ae in the usual
way, i.e.

wTAv=
∑
e
wTe Aeve

Here, ve= v|e, i.e. restriction to subset (e ⊂ D).
In what follows, we shall not assume explicit knowledge of the element matrices Ae, more

precisely, the element matrices will be only needed in one of the applications but not in the
construction of the element topology.
As an illustration, seen in Figure 1, one has the following elements as lists (or sets) of

nodes:

e1 = {1; 2; 6; 7}
e2 = {2; 3; 7; 8}
e3 = {3; 4; 8; 9}
e4 = {4; 5; 9; 10}
e5 = {6; 7; 11; 12}
e6 = {7; 8; 12; 13}
e7 = {8; 9; 13; 14}
e8 = {9; 10; 14; 15}
e9 = {11; 12; 16; 17}
e10 = {12; 13; 17; 18}
e11 = {13; 14; 18; 19}
e12 = {14; 15; 19; 20}

Published in 2002 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:429–444
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Table I. Relation ‘element node’ corresponding to Figure 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1
5 1 1 1 1
6 1 1 1 1
7 1 1 1 1
8 1 1 1 1
9 1 1 1 1
10 1 1 1 1
11 1 1 1 1
12 1 1 1 1

Assume that the following relation (in the sense of [5]) ‘element node’ is given; that is, the
incidence ‘element’ i (rows) contains ‘node’ j (columns), i.e. ‘element node’ can be viewed
as the rectangular (Boolean) sparse matrix of ones in the (i; j)-position if element i contains
node j and zeros elsewhere. The size of the matrix is (number of elements)×(number of
nodes).
The relation ‘element node’ corresponding to Figure 1 is shown in Table I. The incidence

‘node’ i belongs to ‘element’ j, is simply given by the transpose of the above rectangular
sparse matrix, i.e. node element=(element node)T.
One can consider a number of useful relations (easily computable as operations between

sparse matrices):
‘element element’=‘element node’× ‘node element’,
‘node node’=‘node element’× ‘element node’.
The �rst one shows the incidence ‘element’ i intersects ‘element’ j, that is, the (i; j) entry

of the ‘element element’ is one if ‘element’ i and ‘element’ j have a common node, otherwise
the entry is zero.
The second relation (‘node node’) shows the sparsity pattern of the (assembled) �nite

element matrix A=(aij). This is seen as follows. The non-zero entries (i; j) of ‘node node’
show that ‘node’ i is connected to ‘node’ j in the sense they belong to a common element.
Hence, the corresponding entry ai; j of A is possibly non-zero. This is exactly the case since
ai; j can be non-zero only if the nodes i and j belong to the same element. Here, we assume
that each node represents a degree a freedom, that is, it is associated with a �nite element
basis function whose support is contained in the union of elements sharing that node.
The relation ‘node node’ corresponding to Figure 1 is illustrated in Table II.
In practice, one can implement these relations using any available sparse matrix format, for

example CSR (compressed sparse row) format. For parallel implementation, one has to use
appropriate parallel sparse matrix format.

2.2. Element faces

In practice, it is typical that a �nite element mesh generator can provide the �ne-grid element
topology, namely the relations
‘element face’, ‘face element’, ‘face node’, ‘face face’, etc.
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Table II. Relation ‘node node’ corresponding to Figure 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1
6 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1
11 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1
16 1 1 1 1
17 1 1 1 1 1 1
18 1 1 1 1 1 1
19 1 1 1 1 1 1
20 1 1 1 1

Table III. Relation ‘boundarysurface node’ corresponding to Figure 1. Boundary surface 1
is the left vertical, boundary surface 2 is the bottom horizontal, boundary surface 3 is right

vertical and boundary surface 4 is the top horizontal.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1 1 1
2 1 1 1 1 1
3 1 1 1 1
4 1 1 1 1 1

If the initial set of element faces is not given one can de�ne a ‘face’ (as a list of nodes)
as a maximal intersection set. Recall that every element is a list (set) of nodes. Consider all
pairwise intersections of elements, e∩ e1, e1 �=e. Then all maximal sets form the faces of e.
Here ‘maximal’ stands for a set which is not a proper subset of any other intersection set.
The above de�nition will only give the set of interior faces. One may assume that additional
information about the domain boundary is given in terms of lists of nodes called boundary
surfaces. Then, a face is a maximal intersection set of the previous type, or a maximal
intersection set of the type e∩ ‘boundary surface’.
In Figure 1 one can de�ne four boundary surfaces and can construct the relation ‘bound-

arysurface node’ shown in Table III.
At any rate, we assume that the faces of the initial set of elements are given either by a

mesh generator or they can be computed as the maximal intersection sets. I.e. we assume that
the relations ‘element face’ and ‘face node’ are given.

Published in 2002 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:429–444
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One can then construct, based on sparse matrix manipulations, the following relations:
‘face element’=(‘element face’)T, ‘node face’=(‘face node’)T and ‘face face’=

‘face node’× ‘node face’.

2.3. Element agglomeration

The topological information can be used to devise an algorithm to agglomerate elements, i.e.
to construct a new overlapping partition {E} of D where each E=e1 ∪ e2 · · · ∪ ep. In other
words, to build the new relation ‘AE element’ where AE stands for ‘agglomerated element’.
The following algorithm has been proposed in Reference [1]. The motivation was to produce

‘quasiuniform’ ‘AEs’. In particular, this algorithm restores coarse rectangular or triangular
elements (up to boundary e�ects). Since the algorithm, based on the topological relations,
assigns appropriate weights (higher weights for higher dimensional relation) elements that
share a face are more likely to be agglomerated than elements that share only a node. This
should intuitively lead to more compact agglomerated elements.

Algorithm 2.1 (Agglomeration of elements)
Given the relations ‘face face’, ‘element face’ and ‘face element’, and a weight function
w=w(f) (f is a face) initially set to zero. One performs the following steps to generate
‘AEs’:

1. �nd a face f with maximal w(f)¿0, then set w(f)=−1 and add on the list of the
current ‘AE’ the elements e1 and e2 which form f, i.e. f=e1 ∩ e2,

2. update w(g) for all faces g connected to f (based on the relation ‘face face’), according
to the following topological rule, w(g) :=w(g) + 1 if g is connected to f and once
more w(g) :=w(g) + 1 if g and f belong to a same element (here one uses the relation
‘face element’);

3. if for all faces g of the already agglomerated elements e in the current ‘AE’ the weight
w(g) is less than w(f) where f was the last eliminated face, the agglomeration procedure
for the current ‘AE’ is terminated. (Here one uses the relation ‘element face’.) Label
the faces g of the elements in ‘AE’ as eliminated, i.e. set w(g)=−1. Then, go to step 1
to build a new ‘AE’ or stop if all faces have already been eliminated, i.e. if w(f)=−1
for all f.

The above algorithm can be e�ciently implemented based on linked lists, that is, one can
form a linked list of the faces ordered according to their weight and operate on that list based
on their changing weight. One removes a face from the list if its weight becomes −1 or
rearranges the list according to the changes of the weight of the faces occurring step (2) of
the algorithm.

2.4. Faces of AEs

The purpose of constructing AEs is to de�ne similar topological relations for them and per-
form further agglomeration steps by recursion. For this reason, we have to be able to de�ne
faces of AEs which we will call ‘AEfaces’. Assume that the relation ‘AE element’ has been
constructed by Algorithm 2.1, then one can build the relation (as a Boolean sparse matrix)
‘AE face’=‘AE element’× ‘element face’. This represents the AEs in terms of the faces of
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the original elements. The idea is that every two AEs that share a face of the original ele-
ments should share ‘AEface’ as well. That is, one can de�ne faces of agglomerated elements,
‘AEface’s, based on ‘AE face’ by simply intersecting the lists (sets) of every two AEs that
share a common face, or if the relation ‘boundarysurface face’ is given, by intersecting every
AE with a boundary surface if they share a common face of the original elements. By doing
so (intersecting two di�erent AEs in terms of faces, or intersecting an AE in terms of faces
and a boundary surface also in terms of faces), one gets the ‘AEface’s of the ‘AEs’ in terms
of the faces of the original elements. Thus, one constructs the new relations ‘AEface face’,
and ‘AE AEface’. The above de�nition of the (interior) AEfaces can be formalized in the
following algorithm.

Algorithm 2.2 (Creating interior AEfaces)
Given the relations,

‘AE element’; ‘element face’

implemented as Boolean sparse matrices. In order to produce as an output the new relations

‘AEface AE’ and ‘AEface face’

one performs the following steps:

• form the relations:

1. ‘AE face’=‘AE element’× ‘element face’

2. ‘AE AE’=‘AE face’× (‘AE face’)T

• assign an ‘AEface’ to each (undirected) pair (AE1; AE2) of di�erent AEs from the
relation ‘AE AE’. The new relation ‘AEface AE’ is stored also as a Boolean rectangular
sparse matrix.

• form the product (including the numerical part of the sparse matrix–matrix multiply):

‘AEface AE face’≡ ‘AEface AE’× ‘AE face’

• �nally, the required relation

‘AEface face’

is obtained by deleting all entries of ‘AEface AE face’ with numerical value 1.

The last step of the above algorithm is motivated as follows. The non-zero entries of the sparse
matrix ‘AEface AE face’ are either 1 or 2 (since a face can belong to at most two AEs). An
entry aij of ‘AEface AE face’ with value 2 indicates that the ‘AEface’ corresponding to the
row index ‘i’ of aij has a face corresponding to the column index ‘j’ with a weight 2. This
means that the face ‘j’ is common to the two AEs which de�ne the AEface ‘i’. Therefore the
face ‘j’ ‘belongs’ to the AEface ‘i’ (since it is a shared face by the two neighbouring AEs
which form the AEface ‘i’). The entries aij of ‘AEface AE face’ with value one correspond

Published in 2002 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:429–444
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to a face ‘j’ which is interior to one of the AEs (from the undirected pair of AEs that forms
the AEface ‘i’) and hence is of no interest here.

Remark 2.1
If the relation ‘boundarysurface face’ is given one can use it to de�ne boundary AEfaces.
One �rst forms the relation ‘AE boundarysurface’=‘AE face’× (‘boundarysurface face’)T
and then to each AE which is connected to a boundary surface (that is, to each pair (AE,
boundarysurface) from the relation ‘AE boundarysurface’) one assigns (a boundary) AEface.
Thus, the relation ‘AE AEface’ obtained from Algorithm 2.2 is augmented with the bound-
ary AEfaces. The list ‘AEface face’ is augmented with the intersection sets (‘AE face’)∩
(‘boundarysurface face’) for every related pair (AE, boundarysurface) from the relation
‘AE boundarysurface’. This means that we intersect every row of ‘AE face’ with any re-
lated to it row of ‘boundarysurface face’.

Thus the following information needed for the next agglomeration step is created, that is,
we have built the new (‘coarse’) relations, ‘element face’ ≡ ‘AE AEface’, ‘face element’≡
‘AEface AE’=(‘AE AEface’)T.
The last relation needed in Algorithm 2.1 is ‘face face’≡ ‘AEface AEface’. A proper way

to de�ne ‘AEface AEface’ is as the following triple product:

‘AEface AEface’=‘AEface face’× ‘face face’× (‘AEface face’)T

This de�nition (of coarse ‘face face’ relation) does not make use of the relation ‘face node’,
i.e. no node knowledge is required in the recursive application of Algorithm 2.1. The same
holds for Algorithm 2.2.
The new (coarse) relation ‘boundarysurface face’ ≡ ‘boundarysurface AEface’ is readily

constructed as the product ‘boundarysurface face’× (‘AEface face’)T.
If nodal relations are needed on coarse levels, one can easily construct them. For ex-

ample, the new (coarse) relation ‘face node’≡ ‘AEface node’ is computed as the product
‘AEface node’=‘AEface face’× ‘face node’ assuming that the �ne relation ‘face node’ was
given.

3. NESTED DISSECTION ORDERING

We now adopt a dual notation. First, we consider any given relation ‘object1 object2’ as
a rectangular Boolean sparse matrix, and second, each row of this matrix gives a set of
‘object2s’, that is, the rows ‘object1’ can be considered as sets consisting of ‘object2’ entries.
Hence, we can operate with these rows as sets and in particular we can �nd their intersection
and union. We will in particular view a relation ‘object1 object2’ as the set obtained by the
union of its rows.
Assume now that one has generated a sequence of agglomerated elements and their topol-

ogy. In particular, we need {(‘face node’)k}, and {(‘AEface face’)k}, k¿0. (For convenience,
we let (‘AEface face’)0 be the identity Boolean matrix, i.e. at the initial �ne level k=0 ‘AE-
face’ equals ‘face’. Similarly, for other purposes, it is also convenient to let (‘AE element’)0
be the identity relation, that is ‘AE’ equal ‘element’ on the initial level.)
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Having the topological information at �ne level k=0, in addition to the nodal infor-
mation (‘face node’)0, one �rst creates the topological information recursively, in particu-
lar, one creates {(‘AEface face’)k}, k¿0. and then, by de�nition, one sets (‘face node’)k =
(‘AEface face’)k × (‘face node’)k−1 for k ¿ 0.
Note that, by construction, (‘face node’)k ⊂ (‘face node’)k−1. This means that each coarse

face (i.e. a face at the coarse level k) contains nodes only from the �ne level k − 1 faces.
De�nition 3.1
The splitting,

• S0≡D\(‘face node’)0;
• and for k ¿ 0, Sk ≡ (‘face node’)k−1\(‘face node’)k ,

provides a direct decomposition of the original set of nodes D.

In the case of regular re�nement (elements of �ne level k − 1 are obtained by geometrical
re�nement of coarse level k elements) the above splitting gives rise to the so-called nested
dissection ordering (cf., e.g. [10, Chapter 8]). Thus, in a general unstructured grid case our
sparse matrix element topology leads to the following natural extension:

De�nition 3.2 (Nested dissection ordering)
Consider the sets Sk de�ned in De�nition 3.1. The splitting

D=
⋃
k¿0

Sk (1)

gives rise to a block ordering of the assembled sparse matrix A (or of the relation ‘node node’)
called nested dissection ordering.

Two examples of a sparsity pattern of the �ne-grid assembled matrix in the nested dissection
ordering are shown in Figures 2 and 3. The �ne-grid is similar to the one shown in Figures 4
and 5.
Nested dissection ordering is useful in certain approximate factorization algorithms, and

hence can be useful in building preconditioners to A. Combined with, say, minimum degree
ordering within each block of A resulting from the above-described nested dissection ordering,
one may build various ILU-type factorization preconditioners (which are of multilevel type)
as an alternative to the ones proposed in Reference [7]. In Reference [7] the multilevel
two-by-two block-structure of the original matrix was obtained based on a reverse Cuthill–
McKee algorithm. Here, we suggest as an alternative to get multilevel hierarchy by the nested
dissection ordering.

4. COARSE GRID SELECTION AND BUILDING INTERPOLATION
MAPPINGS IN AMG(e)

Assume that an element agglomeration step has been performed and the respective AE topol-
ogy has been created. Assume also that the nodal relations have been computed. In particular,
we need the relations ‘AEface node’ and ‘AE node’ and their derivatives.
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Figure 2. Typical sparsity pattern in the nested dissection ordering.

In Reference [1], the so-called set of ‘vertices’ has been selected as the coarse grid Dc. One
may de�ne vertices in several ways; for example, a node is called a ‘vertex’ if it belongs
to more than one AEface. This is easily checked based on the relation ‘node AEface’=
(‘AEface node’)T. Here, we assume 2-D �ne-grid elements. In 3-D with this de�nition we
will actually select as ‘vertices’ all nodes which are on the (geometric) edges of the AEs. We
have not actually introduced ‘edges’ in our topological relations, but those are similarly de�ned
as maximal intersection sets from the relations ‘AE edge’=‘AE element’× ‘element edge’
assuming that on the �ne grid the relation ‘element edge’ has been given (constructed).
A ‘dimension-free’ de�nition of (true) vertices was given in Reference [1]. Consider

the intersection sets I(x)=
⋂ {AEface: x∈AEface} for all x∈D. A vertex is a minimal set

I(x) in the sense that I(x) does not contain as a proper subset any other I(y). By this
construction of vertices it is clear that any AEface has at least one vertex and the same holds
for any AE, i.e. any AE has at least one vertex. That is, the set of vertices provides a sort
of maximal independent set. To compute minimal intersection sets is certainly more expensive
than simply checking if a node belongs to more than one AEface. That is why in practice,
we prefer to use the �rst de�nition (which in 3-D labels all nodes on AEedges as
vertices).

De�nition 4.1 (Coarse nodes)
A minimal set of coarse nodes Dc ⊂ D is provided by the vertices of ‘AEs’. Thus one has
formed the relation ‘node coarsenode’.
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Figure 3. Typical sparsity pattern in the nested dissection ordering.

The set of vertices can be used as minimal coarse grid in AMG. (This was the choice made
in Reference [1].) Then any �ne node has a coarse neighbour in its neighbourhood de�ned
by the set of AEs which contain that node. Similarly, every node on a AEface has at least
one coarse node neighbour.
From complexity point of view in 3-D it is okay to select all nodes on an AEedge as

coarse nodes (in the case of model uniform re�nement in 3-D one can verify this).
Having ‘node coarsenode’ constructed, one can coarsen the nodal information by building

‘coarseelement coarsenode’=‘AE node’× ‘node coarsenode’
‘coarseface coarsenode’=‘AEface node’× ‘node coarsenode’

Here ‘coarseface’ stands for a face of the coarse elements, that is, coming from the relation
‘coarseelement coarseface’≡ ‘AE AEface’.
Another main ingredient in AMG(e) is the construction of the interpolation mapping P.

Then as a rule (in the symmetric positive de�nite case) the coarse matrix Ac=PTAP.
To be more speci�c we will now outline one way of building interpolation matrix P :

V(Dc) �→V(D). Here, Vc≡V(Dc) stands for the vector space of discrete functions (or vec-
tors) de�ned on the coarse level grid Dc.
Assume that a relation ‘node coarsenode’ has been constructed. The set of coarse nodes

Dc does not have (here) to be a subset of D. However, we assume that each coarse node
is uniquely associated with either a vertex, or the interior of an AEface or the interior of an
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AE. With some abuse of terminology we will simply say that a coarse node is either a vertex
node or an AEface interior node or an AE interior node.
We assume that there is an initial imbedding mapping Q :V(Dc) �→ V(D). For example,

the vertex coarse nodes can be identi�ed as the vertex �ne-grid nodes. This means that the
corresponding column of Q is the unit vector with value one at the �ne-grid vertex position.
Assume also that AEface interior coarse nodes and AE interior coarse nodes can be imbedded
into AE �ne nodes (not necessarily as identity). That is, for a given AE E and a given coarse
vector for a vector vc supported in E (that is its non-zero entries are associated with vertices,
AEface interior and AE interior all on E), then QEvc stands for the restriction of Qvc to E.
Partition the �ne-grid matrix A as

A=



Aint; int Aint; b 0
∗ ∗ ∗
0 ∗ ∗



} AE interior nodes
} AE boundary nodes
} nodes outside AE

Let Aint; E be the rectangular matrix which maps the nodes on E into the interior of E, that is,
Aint; E is the �rst block-row of A in the above block partitioning of A. Let Qb;E be the block
of QE such that Qb;Evc=Qevc|boundary of E . It is clear then that vE=PEvc, where

PE=QE+

[
−(Aint; int)−1Aint; EQE

0

]
} AE interior �ne nodes
} AE boundary nodes

solves the constrained minimization problem

(vE)TAEvE �→ min over (vE)|boundary of E=(QEvc)|boundary of E
Here AE is the principal part of A corresponding to E. We have also assumed that A, hence
AE , is symmetric positive de�nite.
One can come up with various interpolation rules PE by choosing speci�c imbedding map-

pings QE of the coarse nodes into the AE �ne nodes. A fairly general scheme to build
interpolation matrices was presented in Reference [8] which generalizes the classical AMG
interpolation rules (from Reference [9], see also Reference [10] and earlier in Reference [11])
as well as some more recent ones proposed in Reference [12]. Other approaches, exploiting
energy minimization principle to build a coarse space are found in References [13, 14]. If
some additional information is assumed to be available, like element matrices (as in Ref-
erences [15, 1]) one can build interpolation rules again based on local energy minimization
principle. Other approaches exploit the null-space modes called ‘rigid body motions’ to be
exactly represented on coarse levels (see, Reference [16]). Geometrical information (like spe-
ci�c type of �nite element mesh, e.g. triangular mesh) can be utilized in the coarse node
selection phase, as in Reference [17], or even without explicit additional information as in
Reference [18] based only on matrix graph connectivity.
An important point is that if one selects the imbedding QE such that AEface coarse nodes

are imbedded only into AEface interior �ne nodes (on the same AEface) and AE interior
coarse nodes are imbedded into AE interior �ne nodes (in the same AE) then Qb;E will
depend only on the AEfaces (hence will remain the same on the AEface independently of
the AE which shares that AEface). It is clear then that the local mappings PE can be used to
de�ne coarse element matrices. That is, AcEc =(PE)

TAEPE is the actual coarse element matrix,
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where AE is (now) the assembled matrix corresponding to the agglomerate E from the �ne
grid element matrices {Ae; e ⊂ E}. Ac=PTAP can be assembled in the usual way from the
{AcEc}. Here Ec is the set of coarse nodes associated with E. More details about preserving
the notion of coarse element matrices are found in Reference [1], see also Reference [3].
In some cases, one may not be satis�ed with the quality of the resulting coarse grids;

therefore richer sets can be used to de�ne Dc. An extreme choice is to let all nodes on the
AEfaces, form Dc. And in order to keep the sparsity of the resulting coarse matrix somewhat
under control, one may allow some nodes in the interior of the ‘AEs’ to be coarse. The choice
of such nodes can be determined adaptively, in order to make the A� block which corresponds
to the ‘�ne node’-‘�ne node’ connections in the �ne-grid matrix be better conditioned. In Ref-
erence [12] such a procedure was called ‘compatible relaxation’. Alternatively, one may select
other degrees of freedom as coarse nodes, such as, for example, certain sets of eigenvectors
corresponding to a lower part of the spectrum of Schur complements of neighbourhood matri-
ces associated with AE interior nodes and with AEface interior nodes (as chosen in Reference
[3]). But we shall not go into more details here since this is not the main topic of the present
paper.

5. APPLICATION TO NON-LINEAR ELLIPTIC FINITE ELEMENT PROBLEMS

Having the ability to generate a sequence of coarse triangulations, and de�ne ‘vertices’, ‘ele-
ments’ and ‘element matrices’ on all coarse levels by algebraic means, one can easily come up
with meaningful coarse non-linear operators based only on a �ne-grid �nite element non-linear
discretization problem.
Consider, for any two admissible functions u and ’, the non-linear elliptic operator L for

given non-linear positive coe�cients a=a(u) and g=g(u),

(L(u)u; ’)=
∑
T

[
aT (u)

∫
T
∇u · ∇’ dx + gT (u)

∫
T
u’ dx

]

Here, T runs over the set of elements from a given triangulation of the problem domain, and

aT (u)=a

(
1

number of vertices of T
∑

xv−vertex of element T
u(xv)

)
(2)

gT (u) is analogously de�ned.
It is clear, for �nite element functions u and ’, that the �rst expression can be rewritten

in terms of their coe�cient vectors u and ’ as

(L(u)u; ’)=
∑
T
[aT (u)(’T )

TAT uT + gT (u)(’T )
TGTuT ] (3)

where AT is the element matrix for the Laplacian, GT is the element mass matrix and vT=v|T
is the restriction of a given vector v on the set of nodes (degrees of freedom) in T .
The same expression (3) can be used on coarse triangulations to de�ne coarse non-linear

operators. To do that one uses coarse elements obtained by agglomeration and coarse element
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matrices computed as in the AMGe method. That is, assuming we have access to the �ne-grid
element matrices for both the Laplacian and the identity operator (leading to mass matrices)
one can compute their coarse counterparts on all coarse levels.
The averaging formula (2) makes sense on coarse levels since we have the notion of ‘coarse

element vertices’. More general (and more accurate) averaging is also possible.
More details in this direction are found in Reference [4].

6. ILLUSTRATION OF AGGLOMERATED UNSTRUCTURED
FINITE ELEMENT MESH

Finally, in this section, we present a typical set of agglomerated elements produced by the
topological agglomeration Algorithm 2.1 in Figures 4 and 5.

Figure 4.
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Figure 5.

7. CONCLUSIONS

A general conclusion is that the �nite elements and element matrices provide additional useful
information (compared to the assembled matrix only) and one can take advantage of it. More
speci�cally,

• Topological relations implemented as Boolean sparse matrices are useful tools in dealing
with �nite element problems on unstructured meshes; in particular, they are useful to
agglomerate and coarsen �ne elements with target application the (spectral) AMGe. In
this respect,

1. we have provided de�nitions and algorithms to coarsen elements and their topology;
they rely on sparse matrix transpose and matrix–matrix product operations;

2. the coarse element topology can be used to de�ne minimal coarse grids (based on
vertices of AEs);
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3. if one has a parallel agglomeration algorithm the rest of the AMG(e) algorithms is
conceptually straightforward parallelizable; here one needs to choose a parallel sparse
matrix storage and to implement sparse matrix transpose and matrix–matrix product
operations in parallel;

• The derivation of coarse �nite element discretizations of non-linear second-order elliptic
problems is straightforward.

• To reorder the matrix in a block nested dissection ordering is also straightforward.
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